Data analysis is a practice in which raw data is ordered and organized so that useful information can be extracted from it. The process of organizing and thinking about data is key to understanding what the data does and does not contain. There are a variety of ways in which people can approach data analysis, and it is notoriously easy to manipulate data during the analysis phase to push certain conclusions or agendas. For this reason, it is important to pay attention when data analysis is presented, and to think critically about the data and the conclusions which were drawn.
Raw data can take a variety of forms, including measurements, survey responses, and observations. In its raw form, this information can be incredibly useful, but also overwhelming. Over the data analysis process, the raw data is ordered in a way which will be useful. For example, survey results may be tallied, so that people can see at a glance how many people answered the survey, and how people responded to specific questions.
Modeling the data with the use of mathematics and other tools can sometimes exaggerate such points of interest in the data, making them easier for the researcher to see.
Charts, graphs, and textual writeups of data are all forms of data analysis. These methods are designed to refine and distill the data so that readers can glean interesting information without needing to sort through all of the data on their own.
Summarizing data is often critical to supporting arguments made with that data, as is presenting the data in a clear and understandable way. The raw data may also be included in the form of an appendix so that people can look up specifics for themselves.
Reputable researchers will always provide information about the data gathering techniques used, the source of funding, and the point of the data collection in the beginning of the analysis so that readers can think about this information while they review the analysis.
Analysis of data is a process of inspecting, cleaning, transforming, and modeling data with the goal of highlighting useful information, suggesting conclusions, and supporting decision making. Data analysis has multiple facets and approaches, encompassing diverse techniques under a variety of names, in different business, science, and social science domains.
Data mining is a particular data analysis technique that focuses on modeling and knowledge discovery for predictive rather than purely descriptive purposes. Business intelligence covers data analysis that relies heavily on aggregation, focusing on business information. In statistical applications, some people divide data analysis into descriptive statistics, exploratory data analysis, and confirmatory data analysis.